Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 645-651, 2007.
Article in Chinese | WPRIM | ID: wpr-327972

ABSTRACT

The Snail transcription factor has been described as a strong repressor of E-cadherin and its stable expression induces epithelial-mesenchymal transitions responsible for the acquisition of motile and invasive properties during tumor progression. A fascinating analogy that has been raised is the seemingly similar and shared characteristics of stem cells and tumorigenic cells, which prompted us to investigate whether the mechanisms of the acquisition of invasiveness during tumor progression are also involved in bone marrow stem cells (MSCs). In this study, we examined whether Snail gene expression acts in the mobility, cytoskeleton and anti-apoptosis of MSCs. Cell Transmigration Assay and Western Blotting were performed to evaluate the cell migratory capability and the related Signaling pathways in MSCs transfected with the Snail expression vector of pCAGGSneo-SnailHA (MSCs-Sna), compared with MSCs(MSCs-neo) transducted with the control vector(pCAGGSneo). Actin cytoskeleton by Immunofluorescence and Sub-G1 detection by a FACScan flow cytometer were performed to analyze the cytoskeleton and antiapoptotic capability of MSCs-Sna. Compared with MSCs-neo, MSCs-Sna show significantly more migration in the transwell migration system (P < 0.05). And suppression of PI-3K activation by the specific PI-3K inhibitor, Wortmannin, brought on a reduction in Snail-mediated MSCs migration. In addition, we provide evidences that high expression of Snail inhibited the serum-deprivation triggered apoptosis and cytoskeleton changement of MSCs. These data suggest the possibility of facilitating MSCs migration to injured tissue and subsequent survival and maintenance in the local microenvironment after their transplantation, by investigating and increasing the advantage factors such as Snail high expression in MSCs.


Subject(s)
Humans , Actins , Metabolism , Apoptosis , Genetics , Cell Movement , Cells, Cultured , Culture Media, Serum-Free , Genes, Reporter , Genetics , Mesenchymal Stem Cells , Cell Biology , Metabolism , Signal Transduction , Genetics , Snail Family Transcription Factors , Transcription Factors , Genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL